This is Part 1 of an essay in 2 parts. Part 1, below, outlines the issues. Part 2, offers ‘Ten Recommendations for Growing Food in the Anthropocene

Image Removed 

 “Well it’s hotter ‘n blazes and all the long faces / there’ll be no oasis for a dry local grazier” – Tom Waits

 “What we’re seeing is stark evidence that the gradual temperature increase is not the important story related to climate change; it’s the rapid regional changes and increased frequency of extreme weather that global warming is causing. As the Arctic warms at twice the global rate, we expect an increased probability of extreme weather events across the temperate latitudes of the northern hemisphere, where billions of people live.” —  Jennifer Francis (

 “[W]hen we learn that in the collapse now underway resides the seeds of a different style of agriculture that does not carry all the historic baggage that burdens us, we may, with good justification, rejoice.” – Albert Bates (


Summary:  As the toxic trappings of industrial civilization crumble around us, agriculture is set to regain its place at the forefront of our daily American lives.  …And won’t we be surprised to find out that it barely works anymore!  Worsening climate destabilization, combined with the legacy of industrial ecosystem degradation and the loss of crucial pre-industrial agricultural genetics and knowledge, will severely challenge our ability to feed ourselves in the decades ahead.  So perhaps it’s time we re-think our modern food-acquisition strategies in the face of the massive changes bearing down on us.  …And I mean REALLY re-think them.


Below are some key resources to both back up the stuff I’m going to talk about and help people move ahead with the good work we need to do.  

I. Ten Agricultural Premises

My main goal in this essay is to outline a suite of agricultural or food-acquisition strategies that might stand a chance in our climate-destabilized, civilization-collapsing future – and how we might go about laying the foundation for those strategies now. 

But before getting into the essay-proper, I think it’s a good idea to lay out the basic agricultural premises that underlie these recommendations.  For example, if I tell you it’s a really good idea to hone your hunting and gathering skills (as I will do), an acceptance of that message will only take if you’re fully aware of the reasoning that gave birth to such a wild suggestion (pun intended).  So here they are:

Premise 1: The Earth’s climate is destabilizing.  Humans are forcing an unprecedented destabilization of the global climate with fossil fuel CO2 emissions.  We are likely very close to (if not exactly at, or even past) a positive-feedback tipping point, beyond which most or all of the planet becomes uninhabitable to humans.  Due to inertia in the climate system, even if CO2 emissions stopped tomorrow, the worst climatic disruptions are ahead of us and will continue at least for many centuries.

Premise 2: Our agriculture is adapted to the stable Holocene climate.  Land-based human agriculture, the main source of bodily sustenance for North Americans, is adapted only to the stable Holocene climate of the past 10,000 years – the relatively predictable patterns (in both magnitude and timing) of temperature, rainfall, snowmelt, storm intensity, and pest densities in any given region.  Unfortunately, this is a climate our species will likely never see again. 

Premise 3: Climate destabilization will severely stress agriculture.  Climatic destabilization will severely stress the viability of human agriculture via extremes in these traditional climatic patterns – e.g., extremes in the magnitude and timing of temperature, rainfall, snowmelt, storm intensity, and pests.  Such stresses have indeed already begun, and will intensify over the coming years, decades, and centuries as the climate continues to destabilize.

Premise 4: Collapse of industrial civilization will magnify the climatic stresses.  These already-severe agricultural stresses from a destabilizing climate will be magnified by industrial depredations (past, present, and future) and disruptions from the ongoing collapse of industrial civilization.  Specifically, these magnifying factors include rapid disappearance of the fossil fuel platform for current agricultural practices, loss of pre-industrial agricultural technology and genetics, soil loss and degradation, bioaccumulation of toxins (metals, organics, and nuclear), depletion of fossil aquifers, as well as war and social strife.   Post-industrial deforestation and mounting ocean acidification will also have deleterious indirect effects on terrestrial agriculture.

Premise 5: Agriculture will unavoidably shrink in scale and technological complexity.  The combination of climatic destabilization, past/residual industrial depredations, and collapse of industrial civilization will unavoidably shrink the scale and technological complexity of human agriculture.  Agriculture will quickly evolve from (1) today’s doomed, high-tech, huge-scale operations, to (2) still-fragile, large-scale, mechanized operations, to (3) a medium-scale, draft-animal-based agriculture, to (4) a small-scale, ‘primitive’ human-labor-based agriculture, to (5) increasing reliance on managed hunting and gathering, and perhaps finally to (6) regional extirpation.  Different societies will differ in the rate and ultimate level of agricultural simplification based on geographical, ecological, and social factors — but the general trends will be near-universal and undoubtedly severe.

Premise 6:  Ecological complexity in agriculture will necessarily replace technological complexity.  Challenged by (1) the disappearance of essentially all industrial agricultural technology, (2) the loss of much pre-industrial agricultural technology to cultural erosion, (3) severely degraded agricultural ecosystems, and (4) worsening climatic destabilization, successful human food acquisition will necessarily rely increasingly on ecological knowledge and assistance – what we can perhaps call ‘ecological technology’.  We will need to return humbly, thankfully, and thoughtfully to ‘the tangled bank.’  And given the climatic, ecological, and social challenges bearing down on us, such an ecological awakening will not be optional for human survival.

Premise 7: A polyculture of perennial vegetation has the best chance of providing food for humans in the future.  In light of challenges outlined above, a diverse polyculture of perennial vegetation has many advantages over the largely-annual monocultures of traditional human agriculture: more robust structural integrity, improved soil-holding and building ability, superior nutrient and water gathering efficiency, decreased annual labor inputs, more efficient gathering of sunlight, longer annual period of active photosynthesis, and less reliance on precise rainfall and temperature patterns.  As such, an agriculture based largely on a rich diversity of ecologically-managed, food and fiber-producing perennials embedded within diverse perennial-based wild ecosystems will exhibit maximum resilience and stand the best chance of providing food in our climate-destabilized, civilization-collapsing future.

Premise 8:  Our current ‘leaders’ will not aid the necessary transition to an ecologically-sound perennial agriculture – they will hinder it.  The crucial near-term response of the ‘powers that be’ (corporations, national governments) to the gathering existential agricultural emergencies will continue to be, perversely and suicidally, their exacerbation – e.g., trying to maximize carbon emissions (even as they fall), accelerating industrial depredations, and a desperate inflating of the industrial bubble via economic and public-relations chicanery, resulting in a more rapid and destructive collapse when the bubble inevitably pops.  Lobbying of such ‘powers that be’ to change course has proven, at best, largely ineffectual – and perhaps even counter-productive, as it can perpetuate the illusion of ‘if only they understood’ and distract from constructive efforts possible at the local level.

Premise 9:  Local responses are possible, necessary, and should begin ASAP.  In this critical pre-collapse period, constructive responses to both our agricultural and broader predicaments will only be fashioned at the local and community level – a fact that is at once frightening, sad, embarrassing, and empowering.  These responses involve efforts to learn, preserve, and disseminate (1) a more resilient, ecologically-attuned agriculture, (2) hunting and gathering skills, along with the accompanying ecological knowledge and sensitivity, (3) craftsmanship and artistry in the manufacturing of basic necessities (tools, shelter, water infrastructure, medicines), and (4) key social skills, such as conflict-resolution, cooperation, and collaboration, as well as the cultivation of beauty, joyfulness, and thankfulness in our everyday lives.

Premise 10: We may not succeed, but we must try.  Livable outcomes in any given region are neither assured nor frankly probable at this point, but we must try – we have a moral, biological, and spiritual imperative to try.  …Because what do you do when human civilization gives you global catastrophe?  You make catastrophe-aid.  J


…And now for the essay-proper:

II. Growing Food in a Funhouse

In that heady time before every American youth was enslaved by their portable electronics to the cold realm of cyberspace, end-of-summer fairs were the place to be.  The gaudy lights, the blaring tinny music, the hormone-addled teens, the strung-out carnies, the crumbling nuclear families with double-wide strollers, the way-too-made-up tweens, the ever-changing ribbons of smells pummeling your nostrils: cotton candy, cigarette smoke, fried dough, cheap perfume, diesel fumes, oily dust, italian ice… 

Ahhh…the (cough) memories!   


Image Removed
Flemington Fair, NJ, circa 1978.

 But more than anything, I remember a haunting, fair-themed nightmare I had around the time I was ten:  My friends and I were exploring a funhouse, but the place kept taking on a progressively more menacing vibe.  The normal funhouse elements — the amusing surprises, the pleasant distortions of normality, the benign helplessness – were becoming less amusing, pleasant, and benign by the second.  At some point, after realizing that the funhouse was actually trying to kill us rather than fun us, I found myself alone in a barren field outside the funhouse, pock-marked with what appeared to be deep bomb craters.  Descending into one such water-filled crater, an alien (?!) reached out of the water, grabbed my leg, and pulled me under.  …And then I woke up.  (cold shiver)  


Image Removed

Psychoanalyze away, but that dream still haunts me to this day.  I can still see it, still feel it.  It still scares the hell out of me.  In fact, it’s starting to scare me more than ever these days. 

…Because it’s coming true.

Earth’s climate, a key leg of the three-legged agro-ecological stool (climate, soil & ecosystem health, genetics), is taking on all the elements of that menacing funhouse from my nightmare – the increasingly-unpleasant surprises, the ominous distortions of normality, the growing feelings of helplessness among its victims.  …It’s all coming true.

As David Korowicz warns of our collapsing civilization: we are going someplace we have never been before.  This is true economically, socially, and politically – but, most frighteningly, it is also true climatically.  We are in the process of forcing the climate into a state unlike anything our species, much less agriculture, has ever experienced.  Given that, is it really wise to expect our Holocene-adapted agriculture to function adequately in this new ‘evil-funhouse’ climate we’re making?  I would argue no.

So perhaps then we need to rethink our modern food-acquiring strategies in the face of the massive changes now bearing down upon us, with all their challenges and inherent uncertainties. 

…And maybe we better start soon, no?   


III. The Making of a Funhouse Climate

Let me be blunt here: We are wrecking the climate.  Or I should say, we have wrecked the climate.  Because by increasing the atmospheric CO2 from 280ppm to over 390ppm over the few hundred years of our industrial experiment, we have already wrenched the climate out of the relatively stable Holocene climate that gave birth to human agriculture.  And we have likely even wrenched the climate out of its million year long glacial-interglacial dance (to a 100K year beat!) during which our species developed.

As UCLA climatologist Aradhna Tripati reported in Science in 2009, “The last time carbon dioxide levels were apparently as high as they are today…and were sustained at those levels…global temperatures were 5 to 10 degrees Fahrenheit higher than they are today, the sea level was approximately 75 to 120 feet higher than today, there was no permanent sea ice cap in the Arctic and very little ice on Antarctica and Greenland.” 

…And that was 15 million years ago, by the way – well before our species existed.

We are stumbling suicidally into uncharted waters.  The arctic, warming at over twice the global average, is melting rapidly.  Summer arctic sea ice will likely be gone just a few years from now.  (See Figure 1, below.)  And with it will go the reflective albedo buffer to further rapid warming, as well as the regular weather patterns we count on for temperate Northern hemisphere agriculture.        

Image Removed
Figure 1.  Arctic sea ice collapse.  Late summer sea ice volume has dropped over 80% in just the past 33 years.  The arctic will likely be ice-free in summer in a few years, resulting in even more rapid warming.  Source:

 But how exactly do warmer temperatures disrupt regular weather patterns?  Witness the ‘new, improved’ jet stream!  The Northern hemisphere jet stream, that bringer of crop-friendly weather systems to US agriculture, is having some problems.  Even the relatively meager warming to date of the arctic relative to the temperate latitudes appears to have already caused both a slowing and a more extreme meandering of the west-to-east winds of the jet stream.  (See Figure 2, below.)   

Image Removed
Figure 2.  Extreme jet stream!  This figure shows abnormally-meandering path of the jet stream on March 21, 2012 – an increasingly common occurrence as the arctic warms and the temperature differential between the arctic and temperate regions decrease.  Source:

And a slower, more randomly-meandering jet stream brings with it some weird, unpleasant weather to the agricultural bread-baskets of the world.  Larger-amplitude meanderings bring more extremes in hot and cold, often at rather odd times relative to what our crops and agricultural practices are adapted to.  And the slower movement of the jet stream means that these wacky weather systems stick around longer.  Often way too long.  (See short video embedded in link for Figure 2.)  Think of the brutal heat and dryness in the US 2011-12, Russia 2010, and France 2003. 

Indeed, the relatively modest warming of land and ocean temperatures experienced so far has already resulted in a noticeable increase in extreme temperature and rainfall events.  James Hansen has recently documented an alarming and steady shift in summer temperature extremes well beyond anything experienced even in recent times.  (See Figure 3, below.)  And similar upticks in frequencies of severe droughts and massive rainfall events have also been documented.  (Follow all the action at Joe Romm’s 


Image Removed

 Figure 3.  Shift in Northern hemisphere summer temperature extremes in recent decades.  The bottom axis is in standard deviations (σ) above or below the 1951-1980 average summer temperature.  Note the alarming increase in extreme temperature events in the maroon-colored +3σ to +5σ range — crop-killing events with a vanishingly small probability prior to recent decades.  Source: 

Oh, and did someone say ‘massively destructive storms’?  Because as temperatures increase, so also do the strength of storms, with their eroding deluges, vast flooding, violent winds, and deadly storm surges.  ‘Frankenstorms’ are indeed an apt term for these part-natural/part-human-caused monstrosities.  Higher ocean, land, and air temperatures mean more water vapor pumped more rapidly into an atmosphere that can now hold that extra water.  In turn, the extra water vapor in the atmosphere (+4-5%) provides both higher rainfall potential and more stored energy (‘latent heat’) to power the destructive winds.  (See

Image Removed
Frankenstorm Sandy, November 2012 (Source:

And bear in mind that, due to inertia in the climate system, even if we stopped emitting CO2 tomorrow, there is still more destabilization in the pipeline – warming and its resulting ‘wacky weather’ that will persist for centuries and even millennia.  That means significantly more arctic melting, more sea-level rise, more jet stream convulsions, more extreme weather events – the heat-waves, the droughts, the deluges, the hurricanes, the derechos. 

…And all the while, arctic methane feedbacks loom.  If you have the stomach for it, watch this 20min video about the dire situation unfolding up North:  We are children with hammers, banging on armed thermonuclear warheads.  Clink.  Clink.  Clink-clink.  Clunk…uh oh.

In short, our sputtering fossil-fuel orgy is in the process of turning the stable Holocene into an ‘evil funhouse’ climate straight out of a nightmare – one where horrifying surprises pop up ever more frequently, where normal weather patterns are grotesquely and dangerously distorted, where we are increasingly helpless in our efforts to ‘adapt’ to a climate that appears more and more like it’s trying to kill us.

…And all of this, of course, does not bode well for human agriculture. 

Image Removed


IV. The Coming Failure of Holocene-adapted Agriculture

Let me tell you a secret:  Human agriculture is no longer a given.  This is, of course, only a ‘secret’ because so many people these days have so little knowledge of agriculture, climate, or ecology.   …But it’s true:  the 10,000 year-old agricultural experiment may soon be coming to an end.

Human agriculture is, despite our culture’s unthinking faith in its inevitability, an exceedingly-fragile, three-legged stool resting on the shaky legs of (1) Holocene-like climate stability, (2) culturally-preserved genetics and agricultural knowledge, and (3) the health of the soil and surrounding ecosystems.  Knock out any one of those and the stool comes a-tumblin’ down.  And a culture blinks out.

Because, contrary to popular opinion here in the spastic endgame of our death-dealing civilization, agriculture doesn’t come from shiny tractor dealerships, sacks of genetically-engineered ‘miracle’ seeds, heaping piles of fertilizer, tanks of [insert organism]icide, irrigation pipes, six-figure bank loans, and an ‘essentially-infinite’ torrent of fossil fuels.  No — it comes from the Earth, from the skies, from our bodies, and from a complex (and often heartbreakingly destructive) culture passed down from generation to generation . 

…And without any thought to the consequences or to developing alternatives, we’re doing our damndest to snuff it out.  Indeed, a lethal one-two-three punch of climate destabilization, accumulated/ongoing industrial depredations, and the chaos unleashed by a collapsing civilization will very likely bring human agriculture to its knees – possibly within the next few decades, and almost certainly within this century.

So here’s a quick anatomy of our agricultural train-wreck, already in progress:  

1.      Climatic Destabilization:

The climatic requirement for agricultural viability represents a relatively narrow range – in both magnitude and timing – of a number of key variables: temperature, water (in the form of both rainfall and snowmelt), wind, and climate-influenced pest/disease densities. 

Unfortunately, crops born of Holocene-era climate stability and further embrittled by industrial, fossil-fueled coddling and yield-maximization are sitting ducks for the kind of wacky, extreme weather they will increasingly face.  Decade-long crippling droughts, weeks of ultra-extreme high temperatures, surprise late-Spring freezes from a tortured jet stream, erosive levee-bursting deluges, salinization of delta farmland from increasingly-common and severe coastal storm surges, brutal outbreaks of weather-influenced pests and disease, and violent storms with crop-flattening winds – these are the kinds of things we’ll be dealing with.  And not once a decade, but likely every year – several times a year! 

That’s the climate we’re making — and it’s simply not the one Holocene agriculture signed up for.  And note again that this climate destabilization is not academic speculation or merely a reading of the climate-model tea leaves – it’s what we’re already seeing.  It’s already bad and already worsening exponentially.  (See, as well as the climate references above.) 

2.      Loss of Agricultural Genetics, Technology, and Knowledge:

The second key requirement for human agricultural is the suite of culturally-preserved genetics (plant & animal) and accumulated agricultural technology/knowledge available to farmers.

I think it scarcely needs to be said here that virtually the entire toolkit of industrial agricultural technology — the fossil-fuel powered machines, the industrial chemical-dependent crop varieties and animal breeds, and the knowledge of how to manage such technologies — will be next to useless without fossil fuels.  And sometime soon, we just won’t have fossil fuels to kick around anymore.  Why not?  Because the remaining ‘difficult half’ of fossil fuels – tricky enough to access with the industrial machine still humming along – will certainly remain in their dark geologic tombs once the economic wheels come off.  (And just in case, it will be up to the post-collapse ‘monkey-wrench gangs’ to ensure they do.  Long live Edward Abbey!  Long live Derrick Jensen!  Long live…you?)

So where does that leave us?  It leaves us depending on agricultural genetics, technology, and knowledge that served us in pre-industrial times.  And unfortunately for human agriculture, a massive and mostly-unacknowledged loss of these resources has been occurring during the industrial era – a loss that has rapidly accelerated in recent decades.  (Now, I fully realize the destructiveness of many pre-industrial annuals-based agricultural practices — and one could well argue ‘good-riddance’ — but I’ll address that later in the essay when I discuss recommendations for the future.)   

Diverse place-adapted pre-industrial varieties of crops and breeds of domesticated animals, each with their special attributes, have been increasingly sacrificed to a relative small number of industrial varieties and breeds with the narrowest of attributes: yield maximization in a high-input, fossil-fuel-drenched system.  This is unfortunate, of course, because a wide genetic variety will be needed to handle the challenging, unpredictable, low-input conditions that Anthropocene (Funhousocene?) agriculture will certainly face. 

Need a chicken that doesn’t keel over in two weeks of 115 oF heat?  Oh sorry, that breed was lost.  Need a deeply-rooted, sprawling apple tree that can withstand 100 mph winds…twice a year?   Sorry.  Re-breeding will, of course, be possible and necessary (more on that later), but for some crops suffering significant genetic losses, breeding the required genetic varieties from the pathetically narrow set of genetics that ultimately squeeze through the bottleneck may be very slow.  And in some cases, the genetic losses will be so extreme that re-breeding will be effectively impossible – like trying to re-breed a passenger pigeon.

Likewise, pre-industrial agriculture technology and knowledge have also been hemorrhaging, especially since the industrial war machine turned its cold, metallic eyes towards agriculture after WWII.  It’s a familiar story: old-time farmer with place-based knowledge dies, kids in city sell farm to industrial farmer, old-time technology rusts away beside the collapsing barn, many kinds of crucial knowledge blink out.

 How many people will remember how to grow, harvest, and process our crops without fossil fuels?  How many people will remember how to propagate and breed all the new plant or animal varieties we’ll need?  How many people will remember how to preserve and store the harvest for the lean early-Spring months?  (How many people remember that there even are lean months of the year?)  And how will we disperse our remaining fragmented knowledge and technology at a time when long-distance travel and communication for the spreading of these agricultural necessities will likely be close to nil?     

And then there’s the whole war thing.  Namely, that the already-severe loss of the pre-industrial genetics, technology, and knowledge will be further exacerbated by the social strife, war, and population dislocations that will certainly accompany the unraveling of the industrial fabric and the climate catastrophes-to-come.  Varieties, breeds, technology, and knowledge that have been carefully safeguarded from the industrial shredder for generations in back-yard gardens, small farms, and seed-banks can and will be lost in just a single ‘unfortunate incident’.  …And there will certainly be no shortage of ‘unfortunate incidents’ to choose from as we careen onward and downward from here. 

So now close your eyes and mentally layer these lost genetics, technologies, and knowledge onto the toxic disruptions from climate destabilization.  What do you get?  Well, you get an agriculture that barely works.  Hmmm…can’t wait!  But, of course, we’re not even done yet: 

3.      Ecosystem degradation:

The third ‘key requirement’ for the viability of human agriculture is adequate health of the soil and surrounding ecosystems.

Try this:  Look around you.  Marvel at the deep rich topsoil outside your door – fertile topsoil that runs deep right up to the top of the nearby mountain.  And at the foot of the mountain, refresh yourself from the cold, gushing spring that pours out from beneath the boulder.  And now follow the stream down to the crystal-clear river under the cool shade of the huge old-growth trees – now walk across.  That’s right, walk across on the backs of the fish, so thick in the water that the surface boils.

…Now snap out of it.  …Sorry about that.  It hurts, doesn’t it?  As the great tracker/teacher Jon Young has said, “We have lost so much.”  It breaks your heart.  But even beyond the deflating spiritual implications, all our ecosystem degradations are certainly going to come back to bite us physically, as we stumble into the gathering train-wreck of Anthropocene agriculture.  …And they will bite us hard.

Why?  Because as the fossil fuel platform of industrial agriculture blinks out, we’ll need to rely on these ecosystems more than ever (the soil nutrients and communities, the groundwater, the streams and rivers, the pollinators and the other ‘beneficial’ insects, birds, and amphibians, etc.) to furnish all the agricultural services that fossil fuels once myopically provided for us.  And perversely, these are the very treasures that fossil-fueled agriculture was so good at destroying – to the point that many currently-‘productive’ agricultural regions are so ecologically-denuded that we’re in for a very rude awakening once the fossil fuel spigot runs dry and we try in vain to coax food from them. 

For example, take the Central Valley, California, post-collapse:  Soil fertility?  Gone.  Soil communities?  Gone.  Aquifers and springs?  Gone.  Pollinators?  Gone.  Mountain snowmelt?  Gone.  Rainfall?  Wacky.  Agricultural potential?  Gone.  …Now try this exercise in the long-abused-but-now-fossil-fuel-deprived heartlands of Texas, Illinois, etc.  Now try it at home.  Fun!

And don’t forget to layer on that additional legacy of our modern insanity: the persistent toxins that lie as industrial booby traps all over this great land of ours – in the aging nuclear reactors, in the brimming industrial ‘retention’ ponds, in the soils, the water, the animals, our bodies.  Think of the bio-accumulating heavy metals, the PCBs, the radioactive ‘hot particles’ – health-compromising poisons that are both already present in excessive amounts and ready to flood over our communities en masse from their temporary repositories once the feeble industrial safeguards melt away with collapse.  …So like the present-day farmers of Fukushima, many of us will indeed be raising radioactive cesium from the soil along with our post-collapse fruits, nuts, and veggies.  Yum.  …Hey, what’s this lump?      

So we are about to ‘discover’ (surprise!) that human agriculture indeed has an ecological foundation – and that this foundation is either severely eroded, toxic, or just plain gone.  …All of which sort of sucks if your goal is to feed yourself, your family, and your community. 

…But hey, no worries – human agriculture’s a given, right?  


V. The Hazy Future of Human Food

Now, I find no joy in being a ‘Danny Downer’ here, but there just seems to be an awful lot conspiring against our ability to grow food in the decades ahead.  And I do realize I have no divine knowledge; I fully understand that these are complex systems interlinked in complex ways, resulting in an awful lot of possible futures.  But when you start to weight those futures based on the apparent biophysical trajectories of all-things-agricultural (climate change, loss of genetics, soil degradation, economic collapse, etc.), it just doesn’t look too promising.

So as a way to visualize where we may be headed, I made a little chart plotting the possible climate destabilization versus the possible loss of agricultural genetics/technology/knowledge.  I’m holding the degree of ecosystem degradation as a constant here – an approximation, of course, since it is linked to the other variables.  I do this because I suspect that such degradation is (sadly) the most predictable of the three key factors discussed in the last section.


Image Removed
Figure 4. Human food-acquisition in the Anthropocene.  Different food acquisition strategies will be possible based on different (as-yet-to-be-determined) degrees of climate destabilization and loss of agricultural genetics/technology/knowledge.  Both scale and technological complexity decrease upwards and to the right – as each of the variables becomes more degraded. 

So how do we interpret this graph?  Different regions of the graph correspond to different food acquisition strategies that may be possible under various (as-yet-to-be-determined…but looking worse every day) combinations of climate destabilization and genetics/technology/knowledge-losses. 

My (not-exactly-earth-shattering) thesis here is that increased climate destabilization and increased genetics/technology/knowledge-losses will necessarily reduce both the scale and technological complexity of human agriculture.  They will simply reduce what is possible.  First fossil fuel agriculture blinks out.  Then progressively simpler forms of agriculture blink out.  And at some point, any form of agriculture becomes non-viable as a sole provider of food and must be supplemented with hunting and gathering.  Beyond that, only hunting and gathering become viable.  And beyond that, no food acquisition strategies are effective, and the population blinks out.

What I think is vital about the graph is that it’s a conversation we are not having — and one that we really need to start having.  We need to stop pretending human agriculture is a given – and especially to stop pretending that we will be able to feed ourselves using the same fragile, annuals-based, fossil-energy-dependent agriculture we now employ.  …Because we certainly won’t.  And heck, we might not be able to employ any agriculture at all – at least not as it’s now recognized.

And beyond that, we need to start saying that, yea, the stakes of our industrial depredations are rising so high that we actually need to invoke the dreaded “E” words here – extirpation and extinction.  We need to stop telling ourselves that, by continuing our wicked industrial ways, we’re only endangering ‘the economy’ or ‘growth’ or ‘prosperity’ or ‘our standing as a nation.’  Fuck that.  …We’re endangering our lives.  We’re endangering the lives of our children.  We’re endangering the lives of every living being on the planet.  Those are the stakes here, and if we’re hell-bent on offing ourselves for the sake of double-caramel lattes, we should at least have the pseudo-dignity to acknowledge it and maybe sort of apologize to everything we’re taking down with us.

(deep breath)

So there.  And aside from just being kind of scary (or inspiring, I suppose, if you rejoice at the demise of ecosystem-degrading human agriculture), the graph above does have practical implications, which I’ll discuss in the next section.



Here are some key resources to both back up the stuff I’m going to talk about and help people move ahead with the good work we need to do.  

A. Climate

B. Collapse

C. Agriculture

  • Mark Shepard:  Restoration Agriculture: Real-World Permaculture for Farmers (2013)  …VERY HIGHLY RECOMMENDED!
  • Dave Jacke & Eric Toensmeier: Edible Forest Gardens (2005)
  • Bill Mollison: Permaculture: A Designer’s Manual (1988)
  • David Holmgren: Permaculture: Principles and Pathways Beyond Sustainability (2002)
  • Permaculture videos: and
  • Eric Toensmeier: Perennial Vegetables (2007)
  • Joseph Jenkins:  The Humanure Handbook: A Guide to Composting Human Manure (2005)
  • P.A. Yeomans:  Water For Every Farm: Yeoman’s Keyline Plan (2008)
  • Janisse Ray:  The Seed Underground: A Growing Revolution to Save Food (2012)
  • Carol Deppe:  The Resilient Gardener: Food Production and Self-Reliance in Uncertain Times (2010)
  • Sandor Katz: The Art of Fermentation: An In-Depth Exploration of Essential Concepts and Processes from Around the World (2012)
  • Mike & Nancy Bubel:  Root Cellaring: Natural Cold Storage of Fruits & Vegetables (1991)

D. Hunting and Gathering

  • Samuel Thayer:  Natures Garden: A guide to Identifying, Harvesting, and Preparing Wild Plants (2010); The Forager’s Harvest: A guide to Identifying, Harvesting, and Preparing Wild Plants (2006)
  • Richo Cech:  Making Plant Medicine (2000)
  • Jon Young:  Animal Tracking Basics (2007); What the Robin Knows: How Birds Reveal the Secrets of the Natural World (2012)
  • Paul Rezendes: Tracking and the Art of Seeing: How to Read Animal Tracks and Sign (1999)
  • Tom Brown: Tom Brown’s Field Guide to Wilderness Survival (1987); Grandfather: A Native American’s Lifelong Search for Truth and Harmony with Nature (2001)