Projected sea level rise from one meter (dark red) to six meters (light orange) in California’s Bay Area. (Weiss and Overpeck 2011)

Preface. Nearly all, if not all, possible solutions to rising sea levels along all the coasts in the world are listed below, along with their challenges. In the San Francisco Bay Area, the Rockefeller foundation will award $4.6 million dollars to the ten best ideas for how the Bay Area could adapt to sea level rise in May. I am eager to see their solutions given the challenges below, and whether they come up with alternatives.

I left out nuclear power plants, because California won’t have any by 2025.  But sea level rise and tsunamis are a huge threat to coastal nuclear power plants, as we know from Fukushima.  It’s a miracle the nuclear spent fuel pools didn’t catch on fire and require millions of people to evacuate Tokyo.  According to (Stone 2016) in a Science magazine article “Spent fuel fire on U.S. soil could dwarf impact of Fukushima”, 18 million people might need to be evacuated in such a fire at the Peach Bottom nuclear power plant in Pennsylvania (obviously not from a tsunami, but an EMP attack or other disaster). There are 9 U.S. nuclear power plants within two miles of the coast.  Long before sea level rise permanently floods a region, storm surges will push the water higher to new records.

Knowing that fossil fuels are finite, one of the most important things we could do for the grandchildren is to store nuclear waste now, while we have the energy to do it.

Alice Friedemann  author of “When Trucks Stop Running: Energy and the Future of Transportation”, 2015, Springer and “Crunch! Whole Grain Artisan Chips and Crackers”. Podcasts: Derrick JensenPractical PreppingKunstlerCast 253KunstlerCast278Peak Prosperity , XX2 report


Impact of rising sea levels in the San Francisco Bay Area (BCDC 2018)

Clearly the homes, hotels, and other visible infrastructure along the bay will be hammered, or should I say dunked.  But there are other components of infrastructure that will be affected that may not be as obvious:

  • Energy facilities: The U.S. has 101 oil and gas, natural gas, and electric generation plants that would be affected by a 1 foot rise in sea level, and 206 at 10 feet, 41 of them in California (Strauss 2012). And 15 substations, a critical component of the electric system with expensive and dangerous equipment such as transformers, capacitors, voltage regulators, etc.
  • There are 350 contaminated land sites in the Bay Area that will be affected by a 16 inch rise, and 460 with a 55” sea level rise.  Contaminants include industrial solvents (such as acetone, benzene, and chlorinated solvents and their byproducts), acids, paint strippers, degreasers, caustic cleaners, pesticides, chromium and cyanide wastes, polychlorinated biphenyls (PCBs) and other chlorinated hydrocarbons, radium associated with dial painting and stripping, medical debris, unexploded ordnance, metals (e.g., lead, chromium, nickel), gasoline, diesel, and petroleum byproducts, and waste oils.
  • There are also many hazardous material sites with wastes that are toxic, ignitable, corrosive, or reactive, including pesticides, cleaning solvents, pharmaceutical waste, and so on.
  • As sea levels rise, storm water infrastructure will back up and cause inland flooding, salt water could corrode and damage infrastructure designed to handle only freshwater. If pump stations are flooded, their sensitive electrical and computerized components would stop functioning.  The soils around the bay liquefy in a seismic event, causing underground pipes to move, bend, or break, and excess storm water and rainfall events could make these soils even wetter and vulnerable to liquefaction.
  • In addition wastewater treatment systems, roads, railroads, airports, and telecommunication infrastructure will be harmed.
  • Yet to be studied are the impacts on transmission lines, pipelines, or telecommunications infrastructure

What can California do about rising sea levels?

Levees and Seawalls. Protecting California from a 1.4 meter rise in sea level would require 1,100 miles of levees and seawalls, and would cost roughly $14 billion (table 1) to build and $1.4 billion a year to operate and maintain it.  No one is going to spend $14 billion on this, because there’s no guarantee the levees and seawalls would work, and the sea is going to keep rising for millennia, constantly overtopping whatever is put in place. An unusually large storm event can also cause it to rupture like the levees in New Orleans during Hurricane Katrina, even if it has been well maintained.

Paradoxically, it increases vulnerability. Hard shoreline protection is not as effective as natural shorelines at dissipating the energy from waves and tides. As a result, armored shorelines tend to be more vulnerable to erosion, and to increase erosion of nearby beaches. Structural flood protection can also increase human vulnerability by giving people a false sense of security and encouraging development in areas that are vulnerable to flooding.

A huge dike under the Golden Gate bridge won’t work for many reasons – it would cost four times as much as the Three Gorges Dam, and California gets huge floods (i.e. Arkstorm).  If the dike were up to protect from rising sea levels, we’d be flooded from inland water with upstream flooding in the freshwater tributaries of the Bay.

Elevated development is a short-term strategy. Unless it’s on stilts directly over water, characteristics of shorelines are altered and will need protection just like low-lying development. Its advantage is merely that it is not threatened by sea level rise for a longer time.  We don’t know if higher land or structures will support high-density, transit-oriented new development. Much of our region’s high-density neighborhoods and transit are near the Bay’s shoreline. If low-density development is allowed along the shoreline, it could increase global warming emissions, and may not warrant expensive protection measures in the future.

Floating development: structures that float on the surface of the water or that float during floods or tides.  Floating development works only in protected areas, not in areas subject to wind and wave action from storms, such as the ocean coastline. This type of development has not yet been demonstrated in high-density cities.  From an engineering perspective, many structures can be built to float, though they cannot be retrofitted to do so.

Barriers are ecologically damaging and would harm the Bay’s salinity, sedimentation, wetlands, wildlife and endangered species, and increase sedimentation, making parts of the Bay shallower, while increasing coastal erosion.

Floodable developmentstructures designed to handle flooding or retain storm water.  Floodable development could be hazardous. Storm water, particularly at the seaward end of a watershed, is usually polluted with heavy metals and organic chemicals, in addition to sediment and bacteria.

Large quantities of storm water sitting on the surface, or in underground storage facilities, could pose a public health hazard during a flood or leave contamination behind. This could be a particular problem in areas with combined sewer systems, such as San Francisco, where wastewater and street runoff go to the same treatment system. Also, wastewater treatment systems that commonly treat the hazards of combined sewer effluent before releasing it into the Bay do not work well with salt water mixed in. If floodable development strategies are designed to hold and release brackish water, new treatment methods will be needed for the released water to meet water quality standards.

Finally, emergency communication tools and extensive public outreach and management would be required to prevent people from misusing or getting trapped in flooding zones. Floodable development is untested. We don’t know if buildings and infrastructure can be designed or retrofitted to accommodate occasional flooding in a cost-effective way. It is not clear exactly how much volume new floodable development tools will hold. Some of the more heavily engineered solutions, such as a water-holding parking garage, may not turn out to be more beneficial than armoring or investments in upsizing an existing wastewater system.

Living shorelines. Wetlands are natural and absorb floods, slow erosion, and provide habitat.  Living shorelines require space and time to work. Wetlands are generally “thicker” than linear armoring strategies such as levees, so they need more land. They also require management, monitoring and time to become established.  Living shorelines are naturally adaptive to sea level rise, as long as two conditions are present. The first condition is that it must have space to migrate landward. The second condition is that they must be sufficiently supplied with sediment to be able to “keep up” with sea level rise. Due to the many dams and modified hydrology of the Delta and its major rivers, this is a concern for restoration success in San Francisco Bay.  Wetlands will never be restored to their historic extent along the Bay, in part because of the cost of moving development inland from urbanized areas at the water’s edge.   Important challenges for our region will be determining how much flooding new tidal marshes could attenuate, restoring them in appropriate places, and conducting restoration at a faster rate than we would without the looming threat of rising seas.

Managed Retreat. Abandon threatened areas near the shoreline. This strategy is a political quagmire. It involves tremendous legal and equity issues, because not all property owners are willing sellers. And in many places, shoreline communities are already disadvantaged and lack the adaptive capacity to relocate. In addition, retreat may require costs beyond relocation or property costs if site cleanup — such as to remove toxics — is needed following demolition.

Consequences for the ports and airports

The main problem for shipping is not the port.  It’s the roads and railroad tracks surrounding the port that are vulnerable, many of them less than 10 feet above sea level, and there’s nowhere to move them.  Raising them would make them vulnerable to erosion and liquefied soils from floods or earthquakes.

An even bigger deal would be any harm done to the Port of Los Angeles-Long Beach, which handles 45%–50% of the containers shipped into the United States. Of these containers, 77% leave California—half by train and half by truck (Christensen 2008).

The Port of Los Angeles estimates that $2.85 billion in container terminals will need to be replaced.  If the port is shut down for any reason, the cost is roughly $1 billion per day as economic impacts ripple through the economy as shipments are delayed or re-routed according to the National Oceanic and Atmospheric Administration 2008-2017 Strategic Plan.  Replacing the roads, rails, and grade separations nearby would cost $1 billion. If the port’s electrical infrastructure were damaged, equipment such as cranes would be non-operational and cause delays and disruptions in cargo loading and offloading. These would cost $350 million to replace.  The port also has an 8.5 mile breakwater that prevents waves from entering the harbor with two openings to allow ships to enter the port. An impaired breakwater would render shipping terminals unusable and interrupt flows of cargo.  The breakwater has a $500 million replacement value and is managed by the Army Corps of Engineers.

Airports. Meanwhile, all of the airports in the SF Bay area are vulnerable to sea level rise, especially San Francisco and Oakland.  In 2007, the Oakland International airport transported 15 million passengers and 647,000 metric tons of freight.  San Francisco International Airport is the nation’s 13th busiest airport, transporting 36 million people in 2007 and handling 560,000 metric tons of freight $25 billion in exports and $32 billion in imports, more than double the $23.7 billion handled by vessels at the Port of Oakland.


County             Miles of levees & Seawalls     Cost 2000 dollars

Alameda                     110                                            $950,000,000

Del Norte                    39                                             $330,000,000

Contra Costa              63                                             $520,000,000

Humboldt                   42                                             $460,000,000

Los Angeles                94                                             $2,600,000,000

Marin                          130                                             $930,000,000

Mendocino                 1                                                  $34,000,000

Monterey                    53                                              $650,000,000

Napa                            64                                              $490,000,000

Orange                        77                                              $1,900,000,000

San Diego                   47                                             $1,300,000,000

San Luis Obispo        13                                             $210,000,000

San Mateo                  73                                            $580,000,000

Santa Barbara           13                                             $180,000,000

Santa Clara                51                                             $160,000,000

Santa Cruz                 15                                             $280,000,000

Solano                         73                                           $720,000,000

Sonoma                       47                                           $240,000,000

Ventura                       29                                           $790,000,000

Table 1. $14,000,000,000 cost to build 1,100 miles of defenses needed to guard against flooding from a 1.4 m sea-level rise, by county.


BCDC. 2018. Adapting to Rising tides. Findings by Sector. San Francisco Bay Conservation and Development commission.

Copeland, B, et al. November 24, 2012 What Could Disappear. Maps of 24 USA cities flooded as sea level rises.  New York Times.

Grifman, P., et al. 2013. Sea level Rise Vulnerability Study for the City of Los Angeles. University of Southern California.

Heberger, M. et al.  May 2009. The Impacts of Sea-Level rise on the California Coast. Pacific Institute.

Conti, K., et al. Nov 20, 2007. “Analysis of a Tidal Barrage at the Golden Gate,” BCDC

Preliminary Study of the Effect of Sea Level Rise on the Resources of the Hayward Shoreline. March 2010.  Philip Williams & Associates, Ltd.

Sorensen, R. M., et al. Erosion, Inundation, and Salinity Intrusion Chapter 6 Control of Erosion, Inundation, and Salinity Intrusion Caused by Sea Level Rise.

Strauss, B., Ziemlinski, R., 2012. Sea Level Rise Threats to Energy Infrastructure. Climate Central, Washington, DC.


Teaser photo credit: By Doc Searls from Santa Barbara, USA – 2014_11_05_sfo-jfk_021z, CC BY 2.0,